Operaciones con Funciones
Suma de funciones
Sean f y g dos funciones reales de variable real definidas en un mismo intervalo. Se llama suma de ambas funciones, y se representa por f + g, a la función definida por
Resta de funciones
Del mismo modo que se ha definido la suma de funciones, se define la resta de dos funciones reales de variable real f y g, como la función
Para que esto sea posible es necesario que f y g estén definidas en un mismo intervalo.
Producto de funciones
Sean f y g dos funciones reales de variable real, y definidas en un mismo intervalo. Se llama función producto de f y g a la función definida por
Cociente de funciones
Dadas dos funciones reales de variable real, f y g, y definidas en un mismo intervalo, se llama función cociente de f y g a la función definida por
(La función f/g está definida en todos los puntos en los que la función g no se anula.)
Producto de un número por una función
Dado un número real a y una función f, el producto del número por la función es la función definida por
Ejercicio:
Sean las funciones f(x) = 3x + 1, y g(x) = 2x - 4.
Resolución:
· La función f + g se define como
(f + g) (x) = f(x) + g(x) = 3x + 1 + 2x - 4 = 5x - 3.
Resolucion
La función f - g se define como
(f - g) (x) = f(x) - g(x) = 3x + 1 - 2x + 4 = -x + 5.
·
No hay comentarios:
Publicar un comentario